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Abstract. We discuss a many-body Hamiltonian with two- and three-body interactions in two
dimensions introduced recently by Murthy, Bhaduri and Sen. Apart from an analysis of some
exact solutions in the many-body system, we analyse in detail the two-body problem which is
completely solvable. We show that the solution of the two-body problem reduces to solving
a known differential equation due to Heun. We show that the two-body spectrum becomes
remarkably simple for large interaction strengths and the level structure resembles that of the
Landau levels. We also clarify the ‘ultraviolet’ regularization which is needed to define an
inverse-square potential properly and discuss its implications for our model.

1. Introduction

Recently, there has been a revival of interest in the area of exactly solvable models in
one and higher dimensions. A celebrated example of a solvable many-body system is the
well known Calogero—Sutherland model (CSM) in one dimension [1-3]. The model has
found a wide application in areas as diverse as quantum chaos and fractional statistics. The
particles in the CSM are confined in a one-body oscillator potential or on the rim of a
circle, and interact with each other through a two-body potential which varies as the inverse
square of the distance between particles. The CSM and its variants in one dimension,
such as the Haldane—Shastry model for spin chains [4, 5], have provided the paradigms to
analyse more complicated interacting systems. A characteristic feature of the CSM is the
structure of the highly correlated wavefunction. The correlations are built into the exact
wavefunction through a Jastrow factor; — x;)*|x; — x;|* for any pair of particles denoted

by i, j. The exponents on the correlator are related to the strength of the inverse-square
interaction. Notice that this factor is asymmetric (symmetric) in particle labels ferl(0)

and vanishes as the two particles approach each other. A generalization of this in two
dimensions is to be found in Laughlin’s trial wavefunction [6] where the correlations are
built in through the facto(z; —z;), wherez; are the particle coordinates in complex notation.
The corresponding Hamiltonian for which the Laughlin wavefunction is an exact ground
state has not been analysed to the same degree of detail as the CSM. It is known that
the ground state for a Hamiltonian describes spin polarized electrons in the lowest Landau
level with a short-range repulsive interaction [7]. It is also known that such correlations
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are present in the exact ground state of a spin Hamiltonian [8] in two dimensions. The
anyon Hamiltonian [9, 10] in two-space dimensions is another example where the Jastrow
correlation appears [11]. While the two-anyon problem is exactly solvable, the many-
anyon problem is not. For a system of anyons confined in an oscillator potential many
exact solutions and their properties are known but, unlike the CSM in one dimension, the
analytical solution of the full many-body problem is not tractable [12]. It is therefore of
great interest to find models analogous to the CSM in higher dimensions.

In a recent paper [13], three of us proposed a model in two-space dimensions with
nontrivial two- and three-body interactions which could be solved exactly for ground states
and some excited states. It betrayed some similarity to both CSM in one dimension and the
anyonic model in two dimensions through the spectrum. The model was devised by noting
that in two dimensions another form of the pair correlator exists with which a Jastrow-type
many-body wavefunction may be constructed, namely

Xij =XiYj — Xji- (1)
The correlation is, by definition, asymmetric and goes to zero as two particles approach
each other. In addition, it introduces zeros in the wavefunction whenever the relative angle
between the two particles goes to zerororThe difference with the Jastrow—Laughlin form
is also significant;X;; in (1) is a pseudo-scalar. Unlike the Laughlin type of correlation,
it does not impart any angular momentum to the two-dimensional wavefunction. One
important disadvantage of this correlation is that it is not translationally invariant unless the
radial degrees of freedom is frozen. The Hamiltonian model has solutions which have this
correlation built in. Intuitively the correlation can be understood easily by imagining objects
with associated ‘arrows’. The arrows cannot be oriented either parallel or anti-parallel to
each other. The model has some interesting features and it would be of great interest to
find physical systems which incorporate these features.

In this paper we elaborate on our earlier results [13] and present several new results. In
section 2, we discuss the many-body Hamiltonian and display some of the exact solutions
and their structure. The similarities between the spectrum of these exact solutions and the
spectrum of CSM are quite remarkable. Further, when projected onto a circle the model
reduces to a variant of the trigonometric Sutherland model. In this limit the model also
has translational invariance. In section 3, we discuss the two-body problem in detail and
show that the solutions of the two-body problem are described by the Heun equation. In
particular, the spectrum becomes very simple for large values of the interaction strength.
The singular interaction discussed in this paper requires careful treatment in the region
nearX;; = 0; this is discussed in the appendix [14]. Section 4 contains a discussion and
summary.

2. The many-body Hamiltonian and some exact solutions

For the sake of completeness we recall first the Hamiltonian and some of its properties that
have been proposed [13]. We also clarify some points which were not made explicitly clear
in the earlier paper. Th&-particle Hamiltonian which we consider is given by

R? N ma? N R? N op2 72 N T Ty
H=—Y V?+ Y+ g Y L+ ! )
2m ; ! 2 ; ! 2m ; thj 2m ; X,‘]‘Xik
G#)) (i#j#k)

whereX;; is given by (1);g1 and g, are dimensionless coupling strengths of the two- and
three-body interactions respectively. Whjje and g, can be independent of each other in
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general, for the type of solutions involving the correlator in (1) they are not. We will specify
their relationship shortly. The particles are confined in a one-body oscillator confinement
potential. The Hamiltonian is rotationally invariant and manifestly symmetric in all particle
indices. As in the CSM, we may scale away the massand oscillator frequencyy, by
scaling all distances; — /mw/hr;, and measuring the energy in units/ab.” This is

done by settingi = 1, m = 1, andw = 1. In these units, the Hamiltonian is given by

H 1ZN:V2+12N: 2, 81 zN: s 4 82 ZN: Tit Tk ©)
= —— . — T —_— _— [ _
24 2470 2 ¥ Xl?j 2 1 XX
(i#)) (i#j#k)

Note that the total angular momentum operafoe= ). (x; py, — yipx,) commutes with
the Hamiltonian since it is rotationally invariant, and may therefore be used to label the
states. The Hamiltonian is invariant under parity> —x andy — y. In addition, for
anyi, the Hamiltonian is invariant under the transformatign— —r; andr;, — r, for all
k #£ i. This D,y invariance is special to this system, and we are not aware of any other
interacting many-body Hamiltonian which has this symmetry. The consequences of this will
be discussed explicitly in the two-body problem where this is related to the supersymmetric
properties of the system.

We will consider both bosonic and fermionic systems governed by the Hamiltonian (3),
i.e. wavefunctions which are totally symmetric and asymmetric respectively. It will turn
out that certain calculations (for example, in the two-body problem) simplify if we do not
impose any symmetry to begin with.

2.1. The exact bosonic ground state

We first obtain the exact bosonic ground state of this Hamiltonian. As an ansatz for the
ground-state wavefunction, consider a solution of the form

N N

Wo(xi, yi) =1‘[|Xij|gexp<—; r?). (4)
i<j i=1

Clearly ¥q correctly incorporates the behaviour of the wavefunction in the asymptotic region

|ri| — oo, and ¥y is regular forg > 0. In general we insist that our solutions have this

asymptotic form; the conditions under which this is valid will be specified later. The

eigenvalue equation now takes the form

2 N
H%—[(gl—g(g 1) Z —+2(g2— Z +gN(N—1)+N}
i, U i,j.k ’-/
<i¢lj> (4720

®)

ThereforeWy is the exact many-body ground state for an arbitrary number of particles of
the Hamiltonian if

g1=g(—-1 and g =g~ (6)

Sinceg > 0, we haveg; > —; 1 and g, is positive definite. Note that the range gf is
identical to the one obtained |n the CSM. The ground-state energy is now given by

Eo=N+gN(N —1). (7)
Note that this has exactly the form of the ground-state energy of the CSM.
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Since g determines bothg; and g, uniquely, we will regardg as the fundamental
parameter of the Hamiltonian which determines the strength of the interaction. In other
words, we demand that the ground state should be given by (4), andefire the
Hamiltonian to ensure that. It turns out that such a definition requires some special care
in the vicinity of X;; = 0 (called the ultraviolet region below). In the appendix we will
discuss this for the case of two particles. Note that in the two-particle case, the Hamiltonian
only contains the parametgr = g(g — 1) and notg,. As a result, for every value @f; in
the range—zl1 < g1 < 0, the bosonic ground-state energy, givenHfy= 2 + 2g, has two
possible values; these two possibilities correspond to different potentials in the ultraviolet
region. This is somewhat unusual but it is not uncommon for singular potentials. The same
thing also happens in the CSM even for thebody problem; see for example [15-17]. We
discuss this issue in detail in the appendix where we show that the ultraviolet regularization
is determined by the parametgrather than byg;.

We emphasize that our objective here is not to find the general solutions for arlgitrary
andg», but to find a Hamiltonian whose solutions have the novel correlation in equation (1)
built in. In general, ifg; and g, are independent, the Hamiltonian will have a ground state
different from the one given above. Our procedure is therefore similar to the many-anyon
problem where also there are two- and three-body interactions, but the strengths are related
to a single parameter. With the form gf andg, given in (6), the solution found above is
indeed the lowest energy state.

A neat way of proving that we have indeed obtained the ground state can be given using
the method of operators [18]. To this end, define the operators

) ) Vi
Qx; = Py, —1X; +1g Z 71
JG#D Y
. . Xj (8)
QYi =py, —yi—18 Z X;;:
JG#D Y

and their Hermitian conjugate@l, and Q;.. It is easy to see that th@’s annihilate the
ground state in equation (4R, ¥ = 0 and Q,, %o = 0. The Hamiltonian can now be
recast in terms of these operators as

20 10,0, +0},0,] = H - Eo ©)

where Ey is given by equation (7). Clearly the operator on the left-hand side is positive
definite and annihilates the ground-state wavefunction given by equation (4). Thefgfore
must be the minimum energy that an eigenstate can have.

As we remarked earlier, the ground state of the Hamiltonian is bosonic. The ground
state of the Hamiltonian for a fermionic system is not easy to determine analytically (for
g > 0). The problem here is analogous to a similar problem in the many-anyon Hamiltonian
[19-21]. In section 3, we will determine the fermionic ground-state energy for two particles
both numerically and to first order ig using the perturbation theory near= 0 and show
that it has quite an unusual behaviour.

2.2. Spectrum of excited states

While we have not been able to find the complete excited-state spectrum of the model,
the eigenvalue equation for a general excited state may be obtained as follows. From the
asymptotic properties of the solutions of the Hamiltonian in equation (3), it is clear that
W has the general structuke(x;, y;) = Wo(x;, y;)®(x;, y;), whereW, is the ground-state
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wavefunction. Obviously if® is a constant we recover the ground state. In gendral,
satisfies the eigenvalue equation

[_sz Zr, Ve Xy (g ar ) Je=E—r0e. a0

(1#1)

It is interesting to note that whilg; is zero both agg = 0 and 1, the term containing in
the above expression is zero only whea:= 0. This is so because of the boundary condition
that the wavefunctions must vanish |&&;|¢ for nonzerog.

We first discuss the exact solutions of the above differential equation. This is easily
done by defining the complex coordinates= x + iy andz* = x — iy, and their partial
derivativesd = 3/dz = 5(3/dx —i3/dy), andd* = 3/dz* = 1(3/dx +i3/dy). In these
coordinates, the differential equation forreduces toH ® = (E — Eq)®, where

-z 8*

= —223 a*+Z(z,8 +2;07) + 2¢ Z 4% (11)

i, ] ZzZ - ZJZ
G#))
In addition, ® is an eigenstate of the total angular momentum operatdér= [®. We can
now classify some exact solutions according to their angular momentum.
(a) 1 = 0 solutions: Define an auxiliary paramete= » . z;z*, and let® = (). This
has zero total angular momentum. The differential equatlorlbfcueduces to
d2
d ds2
whereb = Eg anda = (Eq — E)/2; Ep is the energy of the ground state. The allowed
solutions are the regular confluent hypergeometric functions [23}) = M(a, b, t).
Normalizability imposes the restrictian= —n,, wheren, is a positive integer; thed(¢)
is a polynomial of degree, (the subscript#’ denotes radial excitations as discussed later).
The corresponding eigenvalues d&e= Ey+ 2n,. This class of solutions was discussed in
[13].
(b) I > 0 solutions: Letr, = Y, z%, and letd = ®(r,). The total angular momentum
is not zero. All the mixed derivative terms in equation (11) drop out, and we obtain the
differential equation
do
2t,— o = (E — Ep)®. (13)
This is the well known Euler equation whose solutions are just monomials The solution
is given by ®(r.) = ¢, and the total angular momentumlis= 2m. The eigenvalues are
E=Eo+2m = Eo+1.
(c) I < 0 exact solutions: Let = Y .(z¥)? and letd = ®(z,.). Once again the
differential equation ford reduces to

+(b—t)——a<l> 0 (12)

2tz*d£ = (E — Eo)®. (14)
dlz*
This is similar to the previous case. The solution is givendhy,-) = t%, and the total
angular momentum is= —2m. The eigenvalues arg = Eg + 2m = Eg — L.
(d) Tower of excited states: One can now combine solutions of a divercases (b)
or (c) with the solutions in (a), and obtain a new class of excited states. Let us define
D(z;, z7) = P1(1)P2(2,), whered, is the solution withl = 0, &, is the solution withl > 0,
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and: andt, have been defined already. The differential equationifas again a confluent
hypergeometric equation given by
d2<1>
dt2
whereb = Ep 4+ 2m anda = (Eo+ 2m — E)/2. The energy eigenvalues are then given
by E = Eo+ 2n, + 2m = Eg + 2n, + 1. One may repeat the procedure to obtain exact
solutions for a tower of excited states with< 0 solutions. As we shall see below, the
existence of the tower is a general result applicable to all excited states of which the exact
solutions shown above form a subset. We notice that these solutions bear a remarkable
resemblance to the many-anyon system where a similar structure exists for the known class
of exact solutions [12].

(e) A general class of excited states: One can combine the solutions of all the three
classes (a), (b) and (c) to obtain an even more general class of solutions. Consider the
polynomial P (n1, no, n3) = t™12t)?, where then; are nonnegative integers. Using the
form of (11), one can show that

—i—(b—t)——aCD 0 (15)

I:IP(n]_, no, n3) = 2(ny + np +n3) P(ny, np, n3) — 8nonsP(n1+1,n, — 1, nz3— 1)
—2n1[ny + 2np + 2n3 + gN(N — D] P(n1 — 1, np, n3). (16)

Using this one can show that there is an exact polynomial solution, whose highest degree
term is P(nq, np, n3). The energy of this solution i€ = Eg + 2(n1 + n2 + n3), and the
angular momentum is= 2(n, — ns).
While there may be more exact solutions, we do not know of a simple way of solving

them. We can however gather some general features as follows. The coordinaies
can be separated into one ‘radial’ coordinate- Y, r? as above and 2 — 1 ‘angular
coordinates collectively denoted lﬁ?/,-(say). Then, equation (10) can be expressed as

2

8 a2
where L = Dy, + ¢gD,, andD,, is an nth-order differential operator which only acts on
functions of the angle$2;. In particular,D, is the Laplacian on a sphere of dimension
2N — 1. Next we note that can be factorized in the form® (x;, y;) = R#)Y (2;), where
Y, a generalized spherical harmonic defined on @% — 1)-dimensional spherg?V—1,
satisfies the eigenvalue equatiéy = AY. (This is the hard part of the spectral problem,
to find the eigenvalues.) We now define

+(Eo—t)£ - - Eq)+ (E Ep)® =0 (17)

(Eo— 12+ 4g) — (Ep — 1). (18)
Further if we writeR () = t*/2R(z), then R satisfies a confluent hypergeometric equation
d2 R
d2+(b—t)——aR 0 (29)

whereb = Eg+u anda = (Eg+u—E)/2. The admissible solutions are the regular confluent
hypergeometric functionsR(z) = M(a,b,t). Normalizability imposes the restriction

a = —n,, wheren, is a positive integer. The®(s) is a polynomial of degree,, and

it hasn, nodes. The energy of this state is given By= Ep + 1 + 2n,. We see that for a
given value ofu, there is an infinite tower of energy eigenvalues separated by a spacing of
2. As remarked earlier, this is reminiscent of what happens in the case of anyons. The tower
structure and the angular momentum are useful in organizing a numerical or analytical study
of the energy spectrum. Since the radial quantum numbeignd the angular momentum,

[, are integers, they cannot change as the paramgtés,varied continuously.
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2.3. Relation to the Sutherland model

It may be of interest to note that the model reduces to a variant of the Sutherland model
[2] in one dimension. In this limit, therefore the model is exactly solvable. Restricting the
particles to move along the perimeter of a unit circle in the Hamiltonian (3) without the
confinement potential, we obtain

H= 1i32+g1ﬁ: 1 4 82 ﬁ: [1 + cot(®; — 6;) cot(d; — 6;)]
= 2 — 8912 2 o Slnz(e, _ 9]) 2 ~ 1 J i k
(i#)) (i j#k)
(20)
sinceX;; = —sin(¥; — 6;) now. By using the identity
N
NN —-1)(N -2
> cot(d; — ;) cotd; — ) = — ( 33 ( ) (21)
i,j,k
£

we immediately recover an analogue of the trigonometric Sutherland model, but shifted by
the constang, N(N —1)(N —2)/3. Note, however, that the potential in (20) depends on the
function sin¢; — 6;), rather than the chord length which is proportional to @inf-6,)/2].
Interestingly, the wavefunction has twice the periodicity of the Sutherland model solutions—
the wavefunction vanishes whenever the particles are at diametrically opposite points on a
circle or at the same point.

3. The two-body problem: complete solution

While we have not been able to solve the many-body problem completely, the two-body
problem in our model is exactly solvable. We demonstrate this by going over to the
hyperspherical formalism first proposed in two dimensions by Kilpatrick and Larsen [23]
(see also [19]). We discuss some of the properties of the two-body spectrum. We also
explicitly show that the two-body problem is integrable. It is important to note that the
two-particle interaction is sufficiently singular and that careful treatment is required in order
to define the problem completely consistently; this is described in the appendix.
The two-body Hamiltonian is given by

81 rf + r%
2 X2
where X = x1y, — x2y1. The two-body problem is solved best in the hyperspherical

coordinate system which allows a parametrization of the coordinates, in terms of
three angles and one lengiR, 6, ¢, ¥) as follows:

(22)

1 1
H=—J[Vi+Vil+Slri+ril+

x1 +iy; = R(cosh cos¢ — isind sing) exp(iy)

X2 + iy2 = R(c0sO sin(¢) + isiné cosg) exp(iv). (23)

We may regardR, 6, ¢) as the body-fixed coordinates which are transformed to the space-
fixed system by an overall rotation gf. For a fixedR, these coordinates define a sphere
in four dimensions within the following intervals:

—n/4<0 < /b —m/2< p < /2 and -7 <Y <. (24)
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An exchange of two particles is achieved by

60— —0

¢ —>m/2—¢ Y=Y if >0 (25)

¢ —> —m/2—¢ o>+ Y if ¢ <O.
With this choice of coordinates, the radial coordinate becoRfes: rZ + r3, which is the
radius of the sphere in four dimensions. Als®,= x1y, — xo,y1 = R?sin(20)/2. Notice
that X depends only orkR and§. Therefore the two-body interaction in the Hamiltonian

is independent of the anglgsand . The integrals of the motion of the system may be
constructed in terms of these new coordinates. The angular momentum operator is given

by L = Y ;(xipy, — yipx,) = —id/0¥, which commutes with the Hamiltonian. Another
constant of motion exists and is given by
0 0 0 0 d
Q [xz oxs T %0y ax, 8y2i| ¢ (26)

Since Q is asymmetric, acting on a symmetric state produces an asymmetric state and vice
versa. We therefore refer to this as a supersymmetry operator (SUSY). The op@ristor
similar to the SUSY operator discovered in the many-anyon problem by Sen [24]. Note
that the differential operator for both angular momentum and the SUSY operators has a
very simple form in the hyperspherical coordinates. The states can therefore be labelled
by the quantum numbers associated with these two operators which we denbtndy

q respectively. With SUSY, the two-body problem is integrable. (The four constants of
motion are the Hamiltonianf, the angular part off, L and Q.) Note that we have

QX = 0 which makes calculations simple. It is easy to check that the bosonic ground state
of the Hamiltonian has the quantum numbgendg of the angular momentum and SUSY
operators equal to zero.

We would like to emphasize that the eigenstates of the SUSY opefatare neither
symmetric nor asymmetric, unless the eigenvajue- 0. After finding a simultaneous
eigenstate ofd, L and Q, we can separate it into symmetric (bosonic) and asymmetric
(fermionic) parts. These parts are individual eigenstate@“but not of Q. Specifically,
we haveQWVz = ¢g¥r and Q¥r = qW¥p, Where B and F denote bosonic and fermionic
states respectively. Thebp + Wy are eigenstates ap, while Y and W are eigenstates
of Q2.

The two-body Hamiltonian in terms of the hyperspherical coordinates is given by

H=_1|:82+38_A2_R2:|+g12 (27)
2|0R2  RIOR R2 R2sirf(20)

where the operatoA? is the Laplacian on the sphef8 and is given by
92 2sin(20) 9 1 [82 92 92 ]

2 .
A= 302 7 coxze) 96 T cog@e) | a2 T 2G50y T oy
The interaction in the Hamiltonian is independent of the angleg and depends only
on R, 6. The operatord. and Q commute with the Hamiltonian since they commute with
the noninteractingg = 0) Hamiltonian. We thus label the states with the eigenvalues
of these operators for alj;. Each of these states is four-fold degenerate: Under parity,
L — —L and 0 — Q and the Hamiltonian is invariant under parity. Therefore the states
labelled by quantum numbers, g) have the same energy &sl, g). The Hamiltonian is
also invariant under the transformatiop— —r; andr, — r,. This is a discrete symmetry
particular to this system. Under this transformation> L and Q — —Q. Therefore the

(28)
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states labelled by quantum numbéfsg) have the same energy & —g). Combining

the two we obtain the four-fold degeneracy of the states. Later we will find that the states
with (I, g) have the same energy &g /) since interchanging and! leaves the differential
equation invariant; therefore the energy of these two states must be the same. We thus have
an eight-fold degeneracy for the levels for whigh and|!/| are nonzero and different from

each other. Note that this degeneracy is a subset of the degeneracy of the noninteracting
system. If|l| = |¢| is honzero, we have a four-fold degeneracy. Finally, there is a four-fold
degeneracy between the stated, 0) and (0, +1) if I # 0.

3.1. Solutions of the eigenvalue equation

We are now interested in solving the eigenvalue equation giveH tty= EW. Following

the remarks made in the previous section, we may, in general, WriteF' (R)® (0, ¢, V).

The eigenvalue equation separates into angular and radial equations. The angular equation
is given by

4g1
A2+ ) ® = +2)® 29
(a24 Yo =pe+2 (29)
whereg > —1, and the radial equation is given by
d?’F 3dF BB +2)
Dbl 2FE —R2_" T\ F =0 30
dW+RM+< R2> (30)

The radial equation can be easily solved by using the methods outlined in the last section
of [22]. The solution is given by

F(R) = R®M(a, b, R? exp(—R?/2) (31)
whereb = g+ 2 anda = (8 + 2 — E)/2 andM (a, b, R?) is the confluent hypergeometric
function. Demanding that = —n, wheren, is an integer, the energy is given by

E=2n+p+2 (32)

Note thatg is still unknown and has to be obtained by solving the angular equation.
Nevertheless, the tower structure of the eigenvalues built on radial excitation of the ground
states is obvious from the above.

The angular equation (29) may be solved with the ansatz

(0,9, v) = P(x)expligp) explily) (33)

wherex = sin(20) andl, g are the state labels in terms of the integer valued eigenvalues
of the angular momentum and SUSY operators. The angular equation then reduces to a
differential equation in a single variable, for the functionP (x):
d’p dp 1 81 BB+ 2)
1—x)— - 22— —————[¢*+2xql+1°lP-p+ 22
A= qee =2 g Taao el TRAFIIP =GPy
Note that the equation has four regular singularities at 0, 1, —1, oo (the singularity at
oo does not play any role sinceis bounded). Therefore the solution is of the form

P(x) = [x]“(1 — )" (1 + x)° @ (x). (35)

One can now fixa, b, ¢ to cancel the singularities. We find that= |/ + ¢|/4 and
¢ = |l —q|/4. Sincel and g are integer valued, the values bfand ¢ are restricted.
The other exponent is given by

ala—1) =g1=g(g-1 witha > 0 (36)

P=0. (34)
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where we have already defingd through equation (6) in terms @f. Note that we have
used the symbat instead ofg. As shown in the appendix, we have to take- g if g > %
Butif g < % we have to generally consider a linear superposition of solutionsangitpual
to ¢ and 1— g (there are more details on this later).

We finally arrive at the required differential equation from which the eigenvalues are
determined,

2
(1—x2)(;x—(2+2[a/x—(b—c)—(a+b+c+1)x](;—(j
(B+1)7?
+[ .

—(a+b+c+§)2+2a(c—b)/x]@=o. (37)

For g = 0, the solutions are simply Jacobi polynomials and the full solution for the angular
part is given in terms of the spherical harmonics on a four-dimensional sphere. In general,
this differential equation is known as the Heun equation whose solutififs(x) are
characterized by the so-calleRl-symbols [25]. The Heun equation is exactly solvable if
either/ or g vanishes, i.e. ib = ¢ as discussed in the next section. The equation is also
exactly solvable at an infinite number of isolated points in the space of paranmetérs).

These are isolated points because if we varglightly away from any one of them, the
equation is not exactly solvable. Note thatc take discrete values and cannot be varied
continuously.

3.2. Polynomial solutions

Let us first consider a class of solutions which are polynomials. ilMe may then write
p
O@) =) Cux* (38)
k=0
where we may defin€y = 1. Substituting this into the differential equation for we see
that theC, s satisfy a three-term recursion relation given by

k+2)(k+1+42a) Cryo—2(b —c)(k+ 1+ a)Ciy1
N [(ﬂ +1)?

—(a+b+c+k+;)2}ck=o (39)

which is, in general, difficult to solve. However, there are two special cases when
polynomial solutions are possible. (i) Fér= ¢, this reduces to a two-term recursion
relation which can be easily solved to obtain all the energy levels. This is an example of a
conditionally exactly solvable (CES) problem [26, 27] in which the full spectrum is exactly
solvable for some special condition (suchas- ¢ here). (i) The other case is when the
coefficient ofCy is zero withk = p (wherep > 1), i.e.

E=2n+2a+2b+2c+2p+2 (40)

in which case one has a polynomial solution of degpeeThis is an example of a quasi-
exactly solvable (QES) problem when only a finite number of states are exactly solvable
for some given values of the parameters. As far as we are aware, this is the first example
where both CES and QES solutions exist in the same problem. We now discuss both types
of solutions in detail.

() CES-type solutions: To see the solutions explicitly, define: x2. In terms of the
variabley the differential equation is written as,

2

di(? +2[a -+ + 1)y](zc;) —-b®=0 (41)

yl—y) dy
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where
1

2

|:a+2b+1+ i| (42)

/ B
c 2|: +2b—2i|

This is now a hypergeometric equation whose solutions are giveRi(by ¢, a’; y). Note

that we need to concentrate only on the solutions fo{ @ < 1. The hypergeometric
series terminates whenevkror ¢’ is a negative integer or zero. In our cdsds always
positive hence the solutions are given whén= —m, wherem is an integer. Therefore

B = 2m + 2a + 4b. The energy eigenvalues are obtained by substituting this into
equation (32),

E=2n,+2a+4b+2m+?2 (43)

Sinceb = ¢, we must have eithar= 0 or ¢ = 0. The energy varies linearly with as in
the case of the exact solutions of the many-body problem. The expressi@nnfeerms of
g will be clarified in the next section. It might be tempting to conclude that all polynomial
solutions vary linearly withg. In fact, that is not so as can be seen from the following
examples.
(i) QES-type solutions: We can have polynomial solutions of degréetherep > 1)
if b, c andg satisfy some specific relations. Let us consider the éase = 1+ éx. This
is a solution if
b+c
T bh-02-1
ands = b — ¢. We have implicitly assumed thatis not equal toc since otherwise this
solution is trivial and of CES type. (Once againcan be equal to eitheg or 1 — g as
discussed in the previous section.) Ther= 2a + 2b + 2¢ + 2, and the full spectrum is
given by E = 2n,+2a+2b+2c+4. We should point out that a solution of this kind is only
possible for fairly large values dfandg; the minimum values needed ai¢= |g| = 3, in
which casen = £.
Similarly, there is a polynomial solution of the for@(x) = 1+ §x + ex?, if

b+c
3, / 1
a=20—3+ /4a?—a+; Wherea:m. (45)

The spectrum is given b¥ = 2n, + 2a + 2b + 2c + 6. These expressions for the energies
are nonlinear i because of constraint (44) or (45). We should however caution that these
are isolated solutions sinégeandc can only take discrete values; hence the above solutions
do not vary smoothly withi. In general, solutions similar to the above may be constructed
for every degree of the polynomial; the corresponding energies are given by equation (40)
wherea is given by a function ob andc¢ which can be derived by solving + 1 recursion
relations obtained from equations (39) by setting —1,0,1, ..., p — 1.

-1 (44)

3.3. Numerical analysis

We now consider the numerical solution of some low-lying states of the two-body problem
since the polynomial solutions described in the previous section do not exhaust the full
spectrum.



2568 R K Bhaduri et al

The noninteracting limit of the system ig = 0 where we have the solutions
corresponding to a four-dimensional oscillator. These are simply the spherical harmonics
on a four-spherd’; ,, wherek = 0,1,2,--- and|l|, |g| < k label the states. When the
degeneracy of these states is taken into account, all the states in the noninteracting limit
g = 0 are completely specified. We now demand that the wavefunctions and energy levels
should vary continuously with the paramegemwhich is the interaction strength. We also
require that the wavefunctions should not diverge at any valueiofthe interval |1, 1].

For given values ob # ¢, we can numerically find the energy levels in two different
ways. We can diagonalize the differential operator in (34) in the basis of the noninteracting
(g = 0) states, or we can solve the differential equation (34) or (37) directly for each state.
We have used both methods and will present the results below.

In order to proceed further, it is necessary to clarify the dependence @f ¢ in
equation (36). By the arguments given in the appendis g if g > % If ¢ < % a can be
equal to either or 1 — g; for any given state, we choose the value which is continuously
connected to the noninteracting solutiongat 0. Namely, any solution of the above kind
must, atg = 0, go either as 1 or as nearx = 0; we then choose = g ora = 1—g in the
two cases respectively for @ g < % In particular, an exact solution which, near= 0,
goes as 1 ap = 0 will go as|x|® for all g > 0. An exact solution which goes asat
g = 0 will go as|x|* ¢ uptog = % and then agx|¢ for g > % As a result solutions of this
form are discontinuous at = % In general, when solving numerically for the nonexact
solutions, we have to allow a superposition of bptk¥ and |x|*¢. Forg > % however,

a must be equal tg.

When solving differential equation (34) or (37), we have to consider the two regions
separately. According to the rules discussed in the appendix, £rg0< % we take the
function P(x) to go as

P(x) = |x|® +d sgnx)|x|*¢ (46)

nearx = 0, and we vary both the coefficiedtas well asg in equation (34) until we find
that the solution of (34) does not divergeat= +1. Bothd and 8 depend ong; it is
possible to determine the limiting valugg0) andd(%) as follows. Atg = 0, suppose that
the Jacobi polynomial is normalized so that= 1 and P’ = C; at x = 0. On the other
hand, from equation (39), we see tl@t = b — ¢ for any nonzerg, no matter how small.

By taking the limitg — 0 in equation (46), we therefore find th&t0) = C; — b + c¢. At

the other endd(%) = +1 because, as we will show next(x) must vanish for either > 0
orforx <Oforallg > % (except for the exact polynomial solutions discussed previously).

Forg > % we must take the solution of the differential equation to go either as (a)
P(x) = 0 for x < 0 and~ x¢ for x small and positive, or as (bpP(x) =0 forx > 0
and ~ (—x)¢ for x small and negative. In either case, we vary the energy until we find
that the solution of (37) (witth = g) does not diverge at = 1 and—1 for (a) and (b)
respectively. It is interesting to note that for each such soluthi,) vanishes identically
in one of the half intervalsf1, 0] or [0, 1]. Note also that if®**<(x) is a solution which
is only nonzero forx > 0, then®4<?(x) = ©%><(—x) will be a solution which is only
nonzero forx < 0; further, the two solutions will have the same energy.

In contrast to the above method for solving the Heun equation (37) directly, the
numerical diagonalization procedure for finding the eigenvalues involves solving the
eigenvalue equation (29). The basis for diagonalization is provided by the eigenstates of the
LaplacianA? on $3, namely the spherical harmonics on a four-sphirg,. For nonzero
interaction strengths, the singular interaction is handled by multiplying the noninteracting
eigenstates byx|¢. The resulting basis is nhonorthogonal, and the diagonalization procedure
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Figure 1. A spectrum of some low-energy states in the two-body problem as a function of the
interaction parametey. The states are labelled ¥, ¢; D), where the first two entries denote

the two angular quantum numbers and the last entry shows the degeneracy of the level. Further,
the radial excitations are denoted by the subscript *

is fairly straightforward although cumbersome. We have truncated the basis such that the
highest energy state in the basis is 200. The results for the low-lying states in the
spectrum obtained through both methods are displayed in figure 1 (forg0< 1) and
figure 2 (forg > 1). Forg < % it is more convenient to use the diagonalization procedure
since the direct solution to equation (34) requires one to numerically fix two separate
parametersd and 8. On the other hand, it is easier to solve the Heun equation (37) for
g> % since one only has to fix one paramegerIn general, we have used both methods
to arrive at the spectrum of low-lying states. For small valueg@f 1), however, the
solutions of the differential equation produce eigenvalues which are somewhat smaller than
the ones obtained by the diagonalization procedure. For large valygshofvever, there
is no perceptible difference between the results from the two methods.

Figure 1 shows the energies for some valued ahd g. Each level is labelled by
(, q; D), where D is the degeneracy of the level away from the noninteracting limit; the
degeneracy is computed by counting the allowed valuesiofnd +¢ using the parity
and supersymmetry transformations for a given level. A subscriftrt the label(, g, D)
denotes the radial excitation which is simply inferred from the existence of the towers. The
bosonic ground state has the predicted behaviour fog;atl is linear with a gradient of 2
as a function ofy. The corresponding wavefunction goes|a$ asx — 0. In contrast, the
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Figure 2. A spectrum of states as a function gfshowing the strong coupling behaviour. We
have shownE — 2g instead of the energy itself.

level (0, 0; 1) starting atE = 4 has an entirely different behaviour. It is exactly solvable for
all g. According to the previous discussiornEgidg = —2 for g < % (with the wavefunction
going as|x|*¢ for small x) and dE/dg = 2 for g > % (with the wavefunction going as
|x|#); thus dE/dg is discontinuous ag = 3.

At ¢ = 0, the gradients H/dg for all the levels can be calculated using the first-order
perturbation theory as shown in the next section. laaye valuesg, we find that all the
energies converge tog2plus even integers as shown in figure 2. This amazing behaviour
can be understood using the WKB method as shown in section 3.5.

3.4. Perturbation theory around = 0

It is interesting to use the perturbation theory to calculate the changes in energy f0bn
and to compare the results with the numerical analysis. We will only describe the first-order
perturbation theory here, the example we will consider is the fermionic ground state which
is doubly degenerate fav = 2.

In general, the naive perturbation theory failsgat 0 because most = 0 eigenstates
do not vanish as{;; — 0; hence the expectation value o,f)ﬂf,. diverges. This problem
can be tackled by using a special kind of perturbation theory which was first devised
for anyons [28-30]. We will first describe the idea for particles and then devote our
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attention toN = 2. Instead of solving the equatioHV = EWV, where H is given in
equation (3), we perform a similarity transformation #b= X,*HX$§ and ¥ = X *v,
whereXy = [1;_; |X;;[¢. We then find that = Hy + V, where Hy is the noninteracting
Hamiltonian (withg; = g, = 0), and

3
=82 U( "9y y’ax,> 47

i#]

The first-order changes in energy may now be obtained by calculating the expectation values
(or matrix elements, in the case of degenerate statdétothe zeroth-order (noninteracting)
eigenstates. These expectation values can be shown to be convergent for all states. Note
that V only contains two-body terms. Althoudh is not Hermitian, it is guaranteed that its
expectation values are real because the original problem has a Hermitian Hamiltbnian

For N = 2, we find that

- 10 cotd o
V=-2 48
g(R8R+ “RZ ae) (48)

in hyperspherical coordinates. Note tHatcommutes with boti. and Q, so that we only

have to consider its matrix elements within a particular block labelled by the eigenvalues
[ andg. Let us now use (48) to compute the first-order change in the states which have
E = 3 atg = 0. There are four such states, wite- +£1 andg = £+1 (labelled(1, 1; 4) in

figure 1); two of these states are actually the ground states of the two-fermion system. Due
to parity and SUSY, these four states remain degenerate far. dflence, it is sufficient

to calculate the first-order change in the state with, $gy;) = (1, 1). Since this state is
unique atg = 0, we only need to use the nondegenerate perturbation theorylwiffihe
normalized wavefunction for this state is

W= i(cos@ — sing) expli(¢ + ¥)] R exp[—R?/2]. (49)
/2
We now obtain the expectation value
00 /4 /2 b4 N
/ R3dR/ cos(29)d9/ do | dy U'Vw =g. (50)
0 —r/4 —m/2 —

We can see from figure 1 that this gives the correct first-order expression for the energy
E = 3+ g nearg = 0 for the states labellel, 1; 4); their first radial excitationgl, 1; 4),
therefore havel =5+ g.

We can similarly calculate the first-order expressions for the energiegned for all
the other levels shown in figure 1. We find that= 2 + 2g for the lower state labelled
(0,0; 1) (i.e. the bosonic ground statel}, = 4 + 2¢ for its radial excitation(0, 0; 1), and
the stateg2, 0; 4); E = 4 — 2g for the upper stat€0, 0; 1); E = 4 for the states2, 2; 4);
E =5—g/2 for the stategl, 1; 4) and (3, 3; 4); and E = 5+ 3g/2 for the stateg3, 1; 8).

3.5. Largeg perturbation theory

We can study the solutions of equation (37) for large valueg bl using an expansion
in 1/¢. For any value ob andc, we will only study the lowest energys, and we will

calculate the leading-order terms ki and the wavefunctio® (x). We first note that the
terms of the order og? in (37) can be satisfied only if = 2g + O(1). Next, we assume
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that £ and ® have WKB expansions [31] of the form

J1

E=2g+2b+26+2+fo+g+O(1/g2)

wl(x)] | 1)

® =exp |:wo(x) +

The boundary conditio® = 1 implies thatwg(0) = w1(0) = 0. To the order ofg,
equation (37) gives the first-order differential equation

d
(1—x2)£=b—c—%x. (52)
We now look at solutions which are nonzero only for> 0. We demand tha® should
neither diverge nor vanish (since the lowest energy solution should be nodeless) anywhere
in the range O< x < 1. Hence, the functionsy and w; should not diverge teo nor —oco
in that range. This fixegp = 2(b — ¢), so that

E=2g+4b+2=2g+|4+q|+2 and O=1A+x)""* (53
Similarly, there are solutions which are nonzero only fog 0. These have
E=2g4+4c+2=2¢+|l—q|+2 and O=>1A-x)°"" (54

We now go to the order of 1 in equation (37). For solutions which are nonzero only for
x > 0, we find that

2—b2 i
E=2g+4b+2+° =2+l +ql+2— 1
s (55)
b— )b 2
@:(1+x)”“'exp[( btet )(In(1+x)—x>]
2g 1+x

We can similarly find solutions which are nonzero only fok 0, by changinge — —x
and interchanging <> ¢, i.e.l +q — | — q andlg — —Ilg, in equation (55).

We see from figure 2 that these formulae correctly describe the leading behaviour of
E. In fact, the larges behaviour is already visible in figure 1, for some states, as we
approachtg = 1. The various levels shown in that figure have the following WKB energies;
E = 2g + 2 for both the(0, 0; 1) states (one of these is the bosonic ground state and the
other is the fermionic ground state fgr> % as discussed laterf =2g + 2+ %g for the
states(l, 1;4); E = 2g + 2+ 1/g for the stateg2,2;4); E =2g+ 2+ %g for the states
(3,3;4); E = 2g + 4 — ;g for the stateg(1, 1;4); E = 2g + 4 for the radial excitation
(0,0; 1), and the state$2,0;4); E = 2g + 4 + %g for the radial excitationg1, 1; 4),;
andE =2¢g+4+ %g for the stateg3, 1; 8). We have also checked that the leading-order
wavefunctions in equations (55) agree remarkably well with the correct wavefun@ions
obtained by solving the Heun equation (37) eveg is not very large.

It is easy to see from equations (53) and (54) that for layg¢he ground state and
also the excited states become infinitely degenerate. This is so because one can choose the
guantum numbers and g in infinitely many ways such that the energies are the same as
g — oo. Further, the spacings now become twice the spacing-at0 since/ andg have
the same parity mod 2.

The largeg behaviour therefore displays a remarkable similarity to the problem of a
particle in a uniform magnetic field where the Landau level spacing is twice the cyclotron
frequency, and each level is infinitely degenerate.
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3.6. Fermionic ground-state energy

The fermionic ground-state energy has a very unusual behaviour as can be seen from figure 1.
For 0 < g < 0.367, the ground-state energy monotonically and nonlinearly increases from

3 to 3266 along the curve labelled, 1; 4). Beyond this point, for 867 < g < 0.5, the
ground-state energy monotonically and linearly decreases fr@663o 3 along the upper

curve (0, 0; 1) satisfyingE = 4 — 2g. Forg > % the fermionic and bosonic ground-state
energies are identical and are given by the cui@e); 1) which satisfiesEy = 2 + 2g,

i.e. both the ground states monotonically increase witfThus, the fermionic ground state
consists of three pieces as a functionggfwhile the bosonic ground state is given by the
single lineEq = 2+ 2¢ for all g > 0.

For two particles, one can understand why the fermionic and bosonic ground-state
energies are identical fgr > % as follows. In this range of, the ultraviolet potential near
x = 0 is infinite and it prevents tunnelling between the regions 0 andx < O (see the
appendix). For two identical particles, an exchange necessarily takes us from a region with
x > 0 to a region withx < 0 according to (25). If tunnelling between the two regions
is forbidden, it becomes impossible to compare the phases of the wavefunction of a given
configuration of the two particles with the wavefunction of the exchanged configuration.
Thus, it is impossible to distinguish bosons from fermiong if % and their energy levels
must be identical.

It is possible that the same argument will go through for more than two particles;
however, we need to understand the ultraviolet regularization of the three-body interactions
properly in order to prove that rigorously. If the argument holds, then we would have the
interesting result that th&/-fermion ground-state energy is also given by (7) foe 1

21
while it may show one or more level crossings fokx %

4. Discussion and summary

To summarize, we have studied a two-dimensional Hamiltonian whose eigenstates have a
novel two-particle correlation. We have shown the existence of several classes of exact
solutions in the many-body problem. We have analysed the two-particle problem in detail
and have shown that it is completely solvable by reducing it to an ordinary differential
equation in one variable which can be solved exactly for a subset of states and numerically
otherwise. The two-body problem is integrable since there are four constants of motion in
involution. We have also discussed the perturbation theory for both small and large coupling
strengths. In the strong interaction limit, the system simplifies and bears a remarkable
resemblance to the Landau level structure.

We have also clarified in the appendix the ultraviolet prescription which is required to
make sense of an inverse-square (singular) potential especially at small coupling strengths.
In particular, we emphasize that it is, in general, not sufficient to specify that the
wavefunctions are regular and square integrable to obtain an energy spectrum uniquely
when dealing with singular interactions. In some domains of the coupling strength, we also
need to specify the ultraviolet regularization to make complete sense of the results. We do
this by demanding that as the parameter 0, the energy levels should smoothly approach
the known noninteracting levels. We believe that this discussion is quite general and may
have a wider applicability to Hamiltonians with singular interactions.

Interesting problems for the future would be to extend this analysis to more than two
particles, and to find an application of our model to some physical system. Recently, we
have come to know that our model has been generalized to three (and higher) dimensions
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with novel three-body (and many-body) correlations [32].
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Appendix

We begin directly from equation (34). Given the real numbeér 0 satisfyingg:; = g(g—1),

P(x) could go, asx| — 0, as eitherx|¢ or |x|*~¢ or even as a general superposition of
the two powers. We therefore need to define the problem more carefully in order to pick
out a desired solution [14].

As mentioned above in the text, we demand the following. First, the jmait0 should
give all the noninteracting two-particle solutions, both bosonic and fermionic. Secondly, all
wavefunctions and energieg, should becontinuousfunctions ofg, but the first derivative
of E need not be continuous (indeed (g is not always continuous at = % as we saw
earlier). Finally, forg > 1, the wavefunction should go &s|¢, and not asx|*¢ which
diverges atx = 0.

From these three requirements, it is clear thatdae % the wavefunctions must go
purely as|x|¢, whereas forg < % the wavefunction could go either &g/ or |x|*~¢ or a
superposition of the two.

We will now show that we can satisfy the above requirements if we redefine the problem
with a different potential in amltraviolet region|x| < xo. We take the potential to be

-1
Vi) = g(gx2 )

2

for |x| > xo

for |x| < xo (A1)

ok‘:
N

whereutanhu = g if 0 < g < ; andu = oo if g > 5. Eventually, of course, we have
to take the limitxo — 0 to recover our original problem. Note that the potential in the
ultraviolet region is not symmetric under— 1— g for g < 1. Hence, the energy spectrum
does not have this symmetry.

To see why equations (A.1) work, we note that the wavefunctionxfiaslightly greater
thanxg (wherexg is much smaller than any physical length scales, such as the width of the

harmonic oscillator potential), is generally given by
P(x) =x% +d x¢ if x> xg

_ (A.2)
P(x) = (—x)®+d_ (—x)+¢ if x < —xo.

(For the exceptional cage= 3, we have to replacg|¢ and|x|*~¢ by |x|*? and|x|¥2In |x|
respectively.)

Now consider the first case in (A.1), i.,e.<0g < % Since the energyk, is much less
than the potential in the inside region| < xo (this is necessarily true for any finite value
of E asxg — 0), the wavefunction in that region is given by

P(x) ~ cosh[(; n O(xo)) X+ 5} (A.3)
0
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whereé$ can be a complex number, and the term @k arises from the energy, which
is much less thaiu /xp)?. We now match the wavefunction and its first derivative, or, more
simply, the ratioP’(x)/P(x) atx = xo+ ¢ and atx = —xg & ¢, wheree is an infinitesimal
number. We then find three possibilities.

(i) The wavefunction may be even about= 0. Thens = 0, andd; = d_ must vanish
ané”g asxo — 0. (The behaviour off.. can be deduced by equating the terms Qf(ﬁ)
and Qixg) in P'/P atx = xot.) In the limit xo — O, therefore, the wavefunction goes
purely as|x|s.

(i) The wavefunction may be odd abowt= 0. Thens§ = in/2, andd, = d_ must
diverge achg’l asxo — 0. The wavefunction is proportional to sgn |x|*~¢ in that limit.

(iii) In the general asymmetric case, we find that we must Hagkthe order ofxé_zg,

andd, = —d_ = d of O(1). (This is found by equating terms of(ql) and ngzg) in
P’/P atx = +xo.) The wavefunction is therefore a superposition of the form

P(x) = |x|® +d sgnx)|x|*5. (A.4)

The cases (i) and (ii) arise if eithéror ¢ is zero in equation (34), since the equation
is invariant underr — —x in that case. This is precisely whén= ¢ and the equation is
exactly solvable. We thus see that the even solutions go|&swhile the odd solutions go
as|x|*¢. If neither! nor g is zero, i.e.b # c, we have case (iii) where a superposition of
the two powers are required.

The second case in (A1), i > % is relatively simpler to analyse since the
wavefunction must be zero in the inside regipn < xo. By imposing this condition
on the wavefunction in the outside region, we see that lgtrand 4 must vanish as
xo — 0. Hence, the wavefunction will go purely &s¢ in that limit. However, since there
is no tunnelling possible through the infinite barrier separating xo from x < —xg, we
will generally have wavefunctions which are nonzero onlyxas xg or only forx < —xo.

This is indeed true as we saw earlier for the solutions of the Heun equati@n>fo§.

We would like to emphasize that the relatiotanhu = g in equation (A.1) is absolutely
essential in order to have the possibility Bfx) ~ |x|¢ for g < % If u were to take any
other value, we would find thaP(x) necessarily goes ds|'~¢ in the limit x, — 0. A
similar fine tuning ofu is necessary in the CSM fof < % Incidentally, the strongly
repulsive potential in the ultraviolet region explains the peculiar result that the bosonic
ground-state energy increases monotonically witaven though the potential away from
the ultraviolet region becomes more and more attractiveg gees from 0 to%. One can
show from equation (A.1) that the integrated potenf@ldx V (x) is actuallypositiveand
large if xo is small, and it increases a@svaries from 0 to%.

Several comments are in order at this stage.

(i) A similar fine tuning is also required in the CSM gf < % is to be allowed, as has
been done by several people [15-17]. Historically, both Calogero [1] and Sutherland [2]
restricted themselves to > % In a sense they could do that since the free fermion limit
corresponds t@ = 1; thereby they avoided the problem wigh< % However, one cannot
reach the free bosonic limit smoothly in that case. Both of these authors begievepto be
unphysical because they chose a particular regularization. What we have argued here is that
one can choose an alternative regularization (called Sutherland’s resonance condition) which
allows one to go continuously all the way upte= 0 and hence reach the free bosonic limit
continuously. We have not seen this being clearly stated in CSM literature before, although
Scarf [14] discusses this issue in a different problem containing the inverse-square potential.

It is worth noting that CSM has only two-body interactions. Hence, the entire discussion
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here is also valid in the many-body case in CSM. This is in contrast to our problem where, for
N > 2, one also has to analyse the ultraviolet regularization of the three-body interactions.

(i) One important consequence of our regularization is that many of the states have
discontinuities in & /dg at g = %; the fermionic ground state also has a level crossing at
g = 0.367. Further, for each value @h < 0, there are two possible ground states since
the ultraviolet regularization depends grand not ong;.

(i) In other words, our HamiltonianH, has several self-adjoint extensions (SAE) for
each value ofg;. What we have done is to choose a particular SAEgpe 0 and two
different SAE forg; < 0. As a result, we have found that for every valugzpin the range
—% < g1 < 0, there are two possible ground-state energies since, as seen above, the SAE
depends org rather than org;. Actually, there is an even more general SAE possible for
any value ofg; where another real parameter (besiggsas to be introduced; however we
shall not discuss that here.
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